Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding how evolution shapes genetic networks to create new developmental forms is a central question in biology. Flowering shoot (inflorescence) architecture varies significantly across plant families and is a key target of genetic engineering efforts in many crops1–4. Asteraceae (sunflower family), comprising 10% of flowering plants, all have capitula, a novel inflorescence that mimics a single flower5,6. Asteraceae capitula are highly diverse but are thought to have evolved once via unknown mechanisms7,8. During capitulum development, shoot stem cells undergo prolonged proliferation to accommodate the formation of intersecting spirals of flowers (florets) along the disk-shaped head9,10. Here we show that capitulum evolution paralleled decreases in CLAVATA3 (CLV3) peptide signaling, a conserved repressor of stem cell proliferation. We trace this to novel amino acid changes in the mature CLV3 peptide which decrease receptor binding and downstream transcriptional outputs. Using genetically tractable Asteraceae models, we show that reversion ofCLV3to a more active form impairs Asteraceae stem cell regulation and capitulum development. Additionally, we trace the evolution ofCLV3and its receptors across the Asterales allowing inferences on capitulum evolution within this lineage. Our findings reveal novel mechanisms driving evolutionary innovation in plant reproduction and suggest new approaches for genetic engineering in crop species.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Abstract PremiseA family‐specific probe set for sunflowers, Compositae‐1061, enables family‐wide phylogenomic studies and investigations at lower taxonomic levels, but may lack resolution at genus to species levels, especially in groups complicated by polyploidy and hybridization. MethodsWe developed a Hyb‐Seq probe set, Compositae‐ParaLoss‐1272, that targets orthologous loci in Asteraceae. We tested its efficiency across the family by simulating target enrichment sequencing in silico. Additionally, we tested its effectiveness at lower taxonomic levels in the historically complex genusPackera. We performed Hyb‐Seq with Compositae‐ParaLoss‐1272 for 19Packerataxa that were previously studied using Compositae‐1061. The resulting sequences from each probe set, plus a combination of both, were used to generate phylogenies, compare topologies, and assess node support. ResultsWe report that Compositae‐ParaLoss‐1272 captured loci across all tested Asteraceae members, had less gene tree discordance, and retained longer loci than Compositae‐1061. Most notably, Compositae‐ParaLoss‐1272 recovered substantially fewer paralogous sequences than Compositae‐1061, with only ~5% of the recovered loci reporting as paralogous, compared to ~59% with Compositae‐1061. DiscussionGiven the complexity of plant evolutionary histories, assigning orthology for phylogenomic analyses will continue to be challenging. However, we anticipate Compositae‐ParaLoss‐1272 will provide improved resolution and utility for studies of complex groups and lower taxonomic levels in the sunflower family.more » « less
-
Studies on the perception of animals and plants often report that students prefer to learn more about animals than plants and usually have more difficultly noticing plants in the environment. This could impact conservation programs and initiatives, as animals are often considered more important and may be deemed worthier of conservation efforts. Providing students an opportunity to connect to plants and understand how they affect their lives is one step toward raising awareness around this issue. Compositae, also known as Asteraceae or the sunflower family, is the largest family of flowering plants, accounting for ~10% of flowering plant diversity in the world. They are present in virtually all biomes and environments and fulfill multiple ecological niches. Some members of the family are widely cultivated as crops, such as sunflower, lettuce, artichoke, and chicory; several species are grown as ornamental plants; and others are used in the pharmaceutical and chemical industry. Compositae’s presence in so many contexts make the family a good candidate for activities aiming to increase plant awareness, as several Compositae species are already present in our everyday lives. Here we present Compositae in a Crate, a teacher-guided outreach activity aimed at the 4th and 5th school grades. This crate of activities contains four different modules focusing on different aspects of the sunflower family: biodiversity, morphology, society, and genomics. Each module has different learning objectives and can be used independently from each other. A guide and different activities, such as flash cards, puzzles, and 3D models, are provided in each module. The activities will be prepared to meet the national and state of Tennessee education standards for the 4th and 5th grades. The produced crates will be available at different institutions and all materials will be made available online so other interested parties can produce their own crates.more » « less
-
Abstract— Antennaria are dioecious perennial herbs distributed mainly in the Holarctic Region, with their major center of diversity in the Rocky Mountains of Western North America. The genus comprises 33 known sexual diploid/tetraploid species and at least five polyploid agamic complexes which mostly reproduce by forming asexual seeds. We performed a phylogenetic reconstruction of the 31 sexually-reproducing Antennaria species using a novel target enrichment method that employs custom capture probes designed to work across Asteraceae. Both concatenated and coalescent-based analyses of DNA sequence data from hundreds of nuclear loci recovered Antennaria as a monophyletic group except for the long-disputed species, Antennaria linearifolia , which was recovered outside of the genus. Antennaria was further resolved into three distinct, major lineages. Analysis of ancestral state reconstruction of 12 taxonomically important morphological characters elucidated patterns of character evolution throughout the genus. Estimations of ancestral geographic ranges and molecular dating analyses demonstrated the Rocky Mountain region, including the Vancouverian Province, as the center of origin for the genus Antennaria, around 5.8 MYA. Subsequent dispersals of Antennaria into the Arctic and Appalachian provinces, Canadian provinces, and Eurasia took place roughly 3.2 MYA, 2.4 MYA, and 1.6 MYA, respectively. Biogeographical stochastic mapping indicated that 51.4% of biogeographical events were based on within-area speciation. The remaining 48.6% of the events were divided into two types of dispersals: 1) range expansion dispersals (anagenic, 37%), and 2) founder/jump dispersals (cladogenic, 11.6%). Our results provide a framework for future evolutionary studies of Antennaria, including speciation, origin(s) of polyploidy, and agamospermy in the genus.more » « less
An official website of the United States government

Full Text Available